Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Biomed Sci ; 31(1): 15, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263133

RESUMEN

BACKGROUND: CDGSH iron-sulfur domain-containing protein 2 (CISD2), a pro-longevity gene, mediates healthspan in mammals. CISD2 is down-regulated during aging. Furthermore, a persistently high level of CISD2 promotes longevity and ameliorates an age-related skin phenotype in transgenic mice. Here we translate the genetic evidence into a pharmaceutical application using a potent CISD2 activator, hesperetin, which enhances CISD2 expression in HEK001 human keratinocytes from an older person. We also treated naturally aged mice in order to study the activator's anti-aging efficacy. METHODS: We studied the biological effects of hesperetin on aging skin using, firstly, a cell-based platform, namely a HEK001 human keratinocyte cell line established from an older person. Secondly, we used a mouse model, namely old mice at 21-month old. In the latter case, we investigate the anti-aging efficacy of hesperetin on ultraviolet B (UVB)-induced photoaging and naturally aged skin. Furthermore, to identify the underlying mechanisms and potential biological pathways involved in this process we carried out transcriptomic analysis. Finally, CISD2 knockdown HEK001 keratinocytes and Cisd2 knockout mice were used to study the Cisd2-dependent effects of hesperetin on skin aging. RESULTS: Four findings are pinpointed. Firstly, in human skin, CISD2 is mainly expressed in proliferating keratinocytes from the epidermal basal layer and, furthermore, CISD2 is down-regulated in the sun-exposed epidermis. Secondly, in HEK001 human keratinocytes from an older person, hesperetin enhances mitochondrial function and protects against reactive oxygen species-induced oxidative stress via increased CISD2 expression; this enhancement is CISD2-dependent. Additionally, hesperetin alleviates UVB-induced damage and suppresses matrix metalloproteinase-1 expression, the latter being a major indicator of UVB-induced damage in keratinocytes. Thirdly, transcriptomic analysis revealed that hesperetin modulates a panel of differentially expressed genes that are associated with mitochondrial function, redox homeostasis, keratinocyte function, and inflammation in order to attenuate senescence. Intriguingly, hesperetin activates two known longevity-associated regulators, namely FOXO3a and FOXM1, in order to suppress the senescence-associated secretory phenotype. Finally, in mouse skin, hesperetin enhances CISD2 expression to ameliorate UVB-induced photoaging and this occurs via a mechanism involving CISD2. Most strikingly, late-life treatment with hesperetin started at 21-month old and lasting for 5 months, is able to retard skin aging and rejuvenate naturally aged skin in mice. CONCLUSIONS: Our results reveal that a pharmacological elevation of CISD2 expression at a late-life stage using hesperetin treatment is a feasible approach to effectively mitigating both intrinsic and extrinsic skin aging and that hesperetin could act as a functional food or as a skincare product for fighting skin aging.


Asunto(s)
Hesperidina , Envejecimiento de la Piel , Anciano , Animales , Humanos , Ratones , Queratinocitos , Mamíferos , Ratones Transgénicos
2.
Eur J Med Chem ; 258: 115583, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37393792

RESUMEN

Down-regulation of Cisd2 in the liver has been implicated in the development of nonalcoholic fatty liver disease (NAFLD) and increasing the level of Cisd2 is therefore a potential therapeutic approach to this group of diseases. Herein, we describe the design, synthesis, and biological evaluation of a series of Cisd2 activators, all thiophene analogs, based on a hit obtained using two-stage screening and prepared via either the Gewald reaction or by intramolecular aldol-type condensation of an N,S-acetal. Metabolic stability studies of the resulting potent Cisd2 activators suggest that thiophenes 4q and 6 are suitable for in vivo studies. The results from studies on 4q-treated and 6-treated Cisd2hKO-het mice, which carry a heterozygous hepatocyte-specific Cisd2 knockout, confirm that (1) there is a correlation between Cisd2 levels and NAFLD and (2) these compounds have the ability to prevent, without detectable toxicity, the development and progression of NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Regulación hacia Abajo , Hepatocitos/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Tiofenos/farmacología , Tiofenos/uso terapéutico
3.
Cell Signal ; 109: 110755, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37315750

RESUMEN

Chronic epithelial defects of the cornea, which are usually associated with severe dry eye disease, diabetes mellitus, chemical injuries or neurotrophic keratitis, as well as aging, are an unmet clinical need. CDGSH Iron Sulfur Domain 2 (CISD2) is the causative gene for Wolfram syndrome 2 (WFS2; MIM 604928). CISD2 protein is significantly decreased in the corneal epithelium of patients with various corneal epithelial diseases. Here we summarize the most updated publications and discuss the central role of CISD2 in corneal repair, as well as providing new results describing how targeting Ca2+-dependent pathways can improve corneal epithelial regeneration. This review mainly focuses on the following topics. Firstly, an overview of the cornea and of corneal epithelial wound healing. The key players involved in this process, such as Ca2+, various growth factors/cytokines, extracellular matrix remodeling, focal adhesions and proteinases, are briefly discussed. Secondly, it is well known that CISD2 plays an essential role in corneal epithelial regeneration via the maintenance of intracellular Ca2+ homeostasis. CISD2 deficiency dysregulates cytosolic Ca2+, impairs cell proliferation and migration, decreases mitochondrial function and increases oxidative stress. As a consequence, these abnormalities bring about poor epithelial wound healing and this, in turn, will lead to persistent corneal regeneration and limbal progenitor cell exhaustion. Thirdly, CISD2 deficiency induces three distinct Ca2+-dependent pathways, namely the calcineurin, CaMKII and PKCα signaling pathways. Intriguingly, inhibition of each of the Ca2+-dependent pathways seems to reverse cytosolic Ca2+ dysregulation and restore cell migration during corneal wound healing. Notably, cyclosporin, an inhibitor of calcineurin, appears to have a dual effect on both inflammatory and corneal epithelial cells. Finally, corneal transcriptomic analyses have revealed that there are six major functional groupings of differential expression genes when CISD2 deficiency is present: (1) inflammation and cell death; (2) cell proliferation, migration and differentiation; (3) cell adhesion, junction and interaction; (4) Ca2+ homeostasis; (5) wound healing and extracellular matrix; and (6) oxidative stress and aging. This review highlights the importance of CISD2 in corneal epithelial regeneration and identifies the potential of repurposing venerable FDA-approved drugs that target Ca2+-dependent pathways for new uses, namely treating chronic epithelial defects of the cornea.


Asunto(s)
Calcineurina , Epitelio Corneal , Humanos , Calcineurina/metabolismo , Córnea/metabolismo , Epitelio Corneal/metabolismo , Transducción de Señal , Cicatrización de Heridas
4.
J Gerontol A Biol Sci Med Sci ; 78(10): 1799-1808, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37148322

RESUMEN

The aging process is complicated and involves diverse organ dysfunction; furthermore, the biomarkers that are able to reflect biological aging are eagerly sought after to monitor the system-wide decline associated with the aging process. To address this, we performed a metabolomics analysis using a longitudinal cohort study from Taiwan (N = 710) and established plasma metabolomic age using a machine learning algorithm. The resulting estimation of age acceleration among the older adults was found to be correlated with HOMA-insulin resistance. In addition, a sliding window analysis was used to investigate the undulating decrease in hexanoic and heptanoic acids that occurs among the older adults at different ages. A comparison of the metabolomic alterations associated with aging between humans and mice implied that ω-oxidation of medium-chain fatty acids was commonly dysregulated in older subjects. Among these fatty acids, sebacic acid, an ω-oxidation product produced by the liver, was significantly decreased in the plasma of both older humans and aged mice. Notably, an increase in the production and consumption of sebacic acid within the liver tissue of aged mice was observed, along with an elevation of pyruvate-to-lactate conversion. Taken together, our study reveals that sebacic acid and metabolites of ω-oxidation are the common aging biomarkers in both humans and mice. The further analysis suggests that sebacic acid may play an energetic role in supporting the production of acetyl-CoA during liver aging, and thus its alteration in plasma concentration potentially reflects the aging process.


Asunto(s)
Ácidos Grasos , Hígado , Humanos , Ratones , Animales , Anciano , Estudios Longitudinales , Ácidos Grasos/metabolismo , Hígado/metabolismo , Envejecimiento , Biomarcadores
5.
Exp Gerontol ; 172: 112053, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36509297

RESUMEN

Tumor necrosis factor (TNF)-α is a proinflammatory cytokine involved in the pathogenesis of sarcopenia, but its short half-life and inconsistent reproducibility limit the potential of TNF-α to be an ideal sarcopenia biomarker. Anti-TNF-α, a natural consequent autoantibody to TNF-α, is an indicator of relatively prolonged TNF-α exposure, has more stable concentrations than TNF-α and should be a better alternative as a biomarker of sarcopenia. Data from 484 participants from the I-Lan Longitudinal Aging Study were used for this study, and sarcopenia was defined by the Asian Working Group for Sarcopenia 2019 consensus. Plasma levels of anti-TNF-α were determined by a sandwich ELISA approach, and levels of TNF-α were determined by an immunoassay. Compared to nonsarcopenic participants, 43 sarcopenic participants had higher levels of anti-TNF-α (0.73 ± 0.19 vs. 0.79 ± 0.25 OD, p = 0.045). Plasma levels of anti-TNF-α were positively correlated with TNF-α (r = 0.24, p < 0.001), and plasma levels of anti-TNF-α were positively correlated with adiposity (r = 0.16, p < 0.001) and negatively correlated with lean body mass (r = -0.14, p = 0.003). Individuals with increasing levels of anti-TNF-α had higher odds of being sarcopenic (OR 5.4, 95 % CI: 1.1-25.8, p = 0.035), and these associations were stronger among women and younger adults. An association between TNF-α and sarcopenia was noted only in middle-aged adults (OR 6.2, 95 % CI: 1.8-21.7, p = 0.004). Plasma anti-TNF-α levels were positively correlated with TNF-α and were significantly associated with sarcopenia. Anti-TNF-α may be a more appropriate biomarker than TNF-α for sarcopenia, but further investigations are needed to confirm its roles in sarcopenia diagnosis and treatment response evaluation.


Asunto(s)
Sarcopenia , Femenino , Humanos , Persona de Mediana Edad , Envejecimiento , Biomarcadores , Necrosis/complicaciones , Reproducibilidad de los Resultados , Inhibidores del Factor de Necrosis Tumoral , Factor de Necrosis Tumoral alfa/inmunología , Autoanticuerpos
6.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36430496

RESUMEN

The aging human population with age-associated diseases has become a problem worldwide. By 2050, the global population of those who are aged 65 years and older will have tripled. In this context, delaying age-associated diseases and increasing the healthy lifespan of the aged population has become an important issue for geriatric medicine. CDGSH iron-sulfur domain 2 (CISD2), the causative gene for Wolfram syndrome 2 (WFS2; MIM 604928), plays a pivotal role in mediating lifespan and healthspan by maintaining mitochondrial function, endoplasmic reticulum integrity, intracellular Ca2+ homeostasis, and redox status. Here, we summarize the most up-to-date publications on CISD2 and discuss the crucial role that this gene plays in aging and age-associated diseases. This review mainly focuses on the following topics: (1) CISD2 is one of the few pro-longevity genes identified in mammals. Genetic evidence from loss-of-function (knockout mice) and gain-of-function (transgenic mice) studies have demonstrated that CISD2 is essential to lifespan control. (2) CISD2 alleviates age-associated disorders. A higher level of CISD2 during natural aging, when achieved by transgenic overexpression, improves Alzheimer's disease, ameliorates non-alcoholic fatty liver disease and steatohepatitis, and maintains corneal epithelial homeostasis. (3) CISD2, the expression of which otherwise decreases during natural aging, can be pharmaceutically activated at a late-life stage of aged mice. As a proof-of-concept, we have provided evidence that hesperetin is a promising CISD2 activator that is able to enhance CISD2 expression, thus slowing down aging and promoting longevity. (4) The anti-aging effect of hesperetin is mainly dependent on CISD2 because transcriptomic analysis of the skeletal muscle reveals that most of the differentially expressed genes linked to hesperetin are regulated by hesperetin in a CISD2-dependent manner. Furthermore, three major metabolic pathways that are affected by hesperetin have been identified in skeletal muscle, namely lipid metabolism, protein homeostasis, and nitrogen and amino acid metabolism. This review highlights the urgent need for CISD2-based pharmaceutical development to be used as a potential therapeutic strategy for aging and age-associated diseases.


Asunto(s)
Envejecimiento Prematuro , Rejuvenecimiento , Humanos , Animales , Ratones , Anciano , Longevidad/genética , Envejecimiento/genética , Mamíferos
7.
NPJ Digit Med ; 5(1): 166, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323795

RESUMEN

Diabetic kidney disease is the leading cause of end-stage kidney disease worldwide; however, the integration of high-dimensional trans-omics data to predict this diabetic complication is rare. We develop artificial intelligence (AI)-assisted models using machine learning algorithms to identify a biomarker signature that predisposes high risk patients with diabetes mellitus (DM) to diabetic kidney disease based on clinical information, untargeted metabolomics, targeted lipidomics and genome-wide single nucleotide polymorphism (SNP) datasets. This involves 618 individuals who are split into training and testing cohorts of 557 and 61 subjects, respectively. Three models are developed. In model 1, the top 20 features selected by AI give an accuracy rate of 0.83 and an area under curve (AUC) of 0.89 when differentiating DM and non-DM individuals. In model 2, among DM patients, a biomarker signature of 10 AI-selected features gives an accuracy rate of 0.70 and an AUC of 0.76 when identifying subjects at high risk of renal impairment. In model 3, among non-DM patients, a biomarker signature of 25 AI-selected features gives an accuracy rate of 0.82 and an AUC of 0.76 when pinpointing subjects at high risk of chronic kidney disease. In addition, the performance of the three models is rigorously verified using an independent validation cohort. Intriguingly, analysis of the protein-protein interaction network of the genes containing the identified SNPs (RPTOR, CLPTM1L, ALDH1L1, LY6D, PCDH9, B3GNTL1, CDS1, ADCYAP and FAM53A) reveals that, at the molecular level, there seems to be interconnected factors that have an effect on the progression of renal impairment among DM patients. In conclusion, our findings reveal the potential of employing machine learning algorithms to augment traditional methods and our findings suggest what molecular mechanisms may underlie the complex interaction between DM and chronic kidney disease. Moreover, the development of our AI-assisted models will improve precision when diagnosing renal impairment in predisposed patients, both DM and non-DM. Finally, a large prospective cohort study is needed to validate the clinical utility and mechanistic implications of these biomarker signatures.

8.
J Biomed Sci ; 29(1): 53, 2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35871686

RESUMEN

BACKGROUND: The human CISD2 gene is located within a longevity region mapped on chromosome 4q. In mice, Cisd2 levels decrease during natural aging and genetic studies have shown that a high level of Cisd2 prolongs mouse lifespan and healthspan. Here, we evaluate the feasibility of using a Cisd2 activator as an effective way of delaying aging. METHODS: Hesperetin was identified as a promising Cisd2 activator by herb compound library screening. Hesperetin has no detectable toxicity based on in vitro and in vivo models. Naturally aged mice fed dietary hesperetin were used to investigate the effect of this Cisd2 activator on lifespan prolongation and the amelioration of age-related structural defects and functional decline. Tissue-specific Cisd2 knockout mice were used to study the Cisd2-dependent anti-aging effects of hesperetin. RNA sequencing was used to explore the biological effects of hesperetin on aging. RESULTS: Three discoveries are pinpointed. Firstly, hesperetin, a promising Cisd2 activator, when orally administered late in life, enhances Cisd2 expression and prolongs healthspan in old mice. Secondly, hesperetin functions mainly in a Cisd2-dependent manner to ameliorate age-related metabolic decline, body composition changes, glucose dysregulation, and organ senescence. Finally, a youthful transcriptome pattern is regained after hesperetin treatment during old age. CONCLUSIONS: Our findings indicate that a Cisd2 activator, hesperetin, represents a promising and broadly effective translational approach to slowing down aging and promoting longevity via the activation of Cisd2.


Asunto(s)
Longevidad , Proteínas del Tejido Nervioso , Envejecimiento/genética , Animales , Proteínas Relacionadas con la Autofagia , Hesperidina , Humanos , Longevidad/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética
11.
Biomedicines ; 10(1)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35052795

RESUMEN

An increased risk of cardiovascular events was identified in patients with peripheral artery disease (PAD). Clopidogrel is one of the most widely used antiplatelet medications. However, there are heterogeneous outcomes when clopidogrel is used to prevent cardiovascular events in PAD patients. Here, we use an artificial intelligence (AI)-assisted methodology to identify genetic factors potentially involved in the clopidogrel-resistant mechanism, which is currently unclear. Several discoveries can be pinpointed. Firstly, a high proportion (>50%) of clopidogrel resistance was found among diabetic PAD patients in Taiwan. Interestingly, our result suggests that platelet function test-guided antiplatelet therapy appears to reduce the post-interventional occurrence of major adverse cerebrovascular and cardiac events in diabetic PAD patients. Secondly, AI-assisted genome-wide association study of a single-nucleotide polymorphism (SNP) database identified a SNP signature composed of 20 SNPs, which are mapped into 9 protein-coding genes (SLC37A2, IQSEC1, WASHC3, PSD3, BTBD7, GLIS3, PRDM11, LRBA1, and CNR1). Finally, analysis of the protein connectivity map revealed that LRBA, GLIS3, BTBD7, IQSEC1, and PSD3 appear to form a protein interaction network. Intriguingly, the genetic factors seem to pinpoint a pathway related to endocytosis and recycling of P2Y12 receptor, which is the drug target of clopidogrel. Our findings reveal that a combination of AI-assisted discovery of SNP signatures and clinical parameters has the potential to develop an ethnic-specific precision medicine for antiplatelet therapy in diabetic PAD patients.

12.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34768917

RESUMEN

Aging is the major risk factor for cardiovascular disease, which is the leading cause of mortality worldwide among aging populations. Cisd2 is a prolongevity gene that mediates lifespan in mammals. Previously, our investigations revealed that a persistently high level of Cisd2 expression in mice is able to prevent age-associated cardiac dysfunction. This study was designed to apply a genetic approach that induces cardiac-specific Cisd2 overexpression (Cisd2 icOE) at a late-life stage, namely a time point immediately preceding the onset of old age, and evaluate the translational potential of this approach. Several discoveries are pinpointed. Firstly, Cisd2 is downregulated in the aging heart. This decrease in Cisd2 leads to cardiac dysfunction and impairs electromechanical performance. Intriguingly, Cisd2 icOE prevents an exacerbation of age-associated electromechanical dysfunction. Secondly, Cisd2 icOE ameliorates cardiac fibrosis and improves the integrity of the intercalated discs, thereby reversing various structural abnormalities. Finally, Cisd2 icOE reverses the transcriptomic profile of the aging heart, changing it from an older-age pattern to a younger pattern. Intriguingly, Cisd2 icOE modulates a number of aging-related pathways, namely the sirtuin signaling, autophagy, and senescence pathways, to bring about rejuvenation of the heart as it enters old age. Our findings highlight Cisd2 as a novel molecular target for developing therapies targeting cardiac aging.


Asunto(s)
Envejecimiento/genética , Proteínas Relacionadas con la Autofagia/genética , Fibrosis Endomiocárdica/genética , Corazón/fisiología , Longevidad/genética , Proteínas del Tejido Nervioso/genética , Rejuvenecimiento/fisiología , Animales , Autofagia/genética , Proteínas Relacionadas con la Autofagia/biosíntesis , Senescencia Celular/genética , Fibrosis Endomiocárdica/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/biosíntesis , Sirtuinas/metabolismo , Transcriptoma/genética
13.
Biomedicines ; 9(11)2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34829864

RESUMEN

With an increased life expectancy among humans, aging has recently emerged as a major focus in biomedical research. The lack of in vitro aging models-especially for neurological disorders, where access to human brain tissues is limited-has hampered the progress in studies on human brain aging and various age-associated neurodegenerative diseases at the cellular and molecular level. In this review, we provide an overview of age-related changes in the transcriptome, in signaling pathways, and in relation to epigenetic factors that occur in senescent neurons. Moreover, we explore the current cell models used to study neuronal aging in vitro, including immortalized cell lines, primary neuronal culture, neurons directly converted from fibroblasts (Fib-iNs), and iPSC-derived neurons (iPSC-iNs); we also discuss the advantages and limitations of these models. In addition, the key phenotypes associated with cellular senescence that have been observed by these models are compared. Finally, we focus on the potential of combining human iPSC-iNs with genome editing technology in order to further our understanding of brain aging and neurodegenerative diseases, and discuss the future directions and challenges in the field.

14.
Aging Cell ; 20(12): e13523, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34811857

RESUMEN

The liver plays a pivotal role in mammalian aging. However, the mechanisms underlying liver aging remain unclear. Cisd2 is a pro-longevity gene in mice. Cisd2 mediates lifespan and healthspan via regulation of calcium homeostasis and mitochondrial functioning. Intriguingly, the protein level of Cisd2 is significantly decreased by about 50% in the livers of old male mice. This down-regulation of Cisd2 may result in the aging liver exhibiting non-alcoholic fatty liver disease (NAFLD) phenotype. Here, we use Cisd2 transgenic mice to investigate whether maintaining Cisd2 protein at a persistently high level is able to slow down liver aging. Our study identifies four major discoveries. Firstly, that Cisd2 expression attenuates age-related dysregulation of lipid metabolism and other pathological abnormalities. Secondly, revealed by RNA sequencing analysis, the livers of old male mice undergo extensive transcriptomic alterations, and these are associated with steatosis, hepatitis, fibrosis, and xenobiotic detoxification. Intriguingly, a youthful transcriptomic profile, like that of young 3-month-old mice, was found in old Cisd2 transgenic male mice at 26 months old. Thirdly, Cisd2 suppresses the age-associated dysregulation of various transcription regulators (Nrf2, IL-6, and Hnf4a), which keeps the transcriptional network in a normal pattern. Finally, a high level of Cisd2 protein protects the liver from oxidative stress, and this is associated with a reduction in mitochondrial DNA deletions. These findings demonstrate that Cisd2 is a promising target for the development of therapeutic agents that, by bringing about an effective enhancement of Cisd2 expression, will slow down liver aging.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Hígado/patología , Enfermedades Metabólicas/genética , Proteínas del Tejido Nervioso/metabolismo , Envejecimiento , Animales , Masculino , Ratones
15.
EBioMedicine ; 73: 103654, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34740104

RESUMEN

BACKGROUND: Age-related changes affecting the ocular surface cause vision loss in the elderly. Cisd2 deficiency drives premature aging in mice as well as resulting in various ocular surface abnormalities. Here we investigate the role of CISD2 in corneal health and disease. METHODS: We studied the molecular mechanism underlying the ocular phenotypes brought about by Cisd2 deficiency using both Cisd2 knockout (KO) mice and a human corneal epithelial cell (HCEC) cell line carrying a CRISPR-mediated CISD2KO background. We also develop a potential therapeutic strategy that targets the Ca2+ signaling pathway, which has been found to be dysregulated in the corneal epithelium of subjects with ocular surface disease in order to extend the mechanistic findings into a translational application. FINDINGS: Firstly, in patients with corneal epithelial disease, CISD2 is down-regulated in their corneal epithelial cells. Secondly, using mouse cornea, Cisd2 deficiency causes a cycle of chronic injury and persistent repair resulting in exhaustion of the limbal progenitor cells. Thirdly, in human corneal epithelial cells, CISD2 deficiency disrupts intracellular Ca2+ homeostasis, impairing mitochondrial function, thereby retarding corneal repair. Fourthly, cyclosporine A and EDTA facilitate corneal epithelial wound healing in Cisd2 knockout mice. Finally, cyclosporine A treatment restores corneal epithelial erosion in patients with dry eye disease, which affects the ocular surface. INTERPRETATION: These findings reveal that Cisd2 plays an essential role in the cornea and that Ca2+ signaling pathways are potential targets for developing therapeutics of corneal epithelial diseases. FUNDING: This study was supported by the Ministry of Science and Technology (MOST) and Chang Gung Medical Research Foundation, Taiwan.


Asunto(s)
Epitelio Corneal/fisiología , Proteínas de la Membrana/genética , Regeneración , Animales , Biomarcadores , Calcio/metabolismo , Línea Celular , Biología Computacional/métodos , Ciclosporina/farmacología , Células Epiteliales/metabolismo , Epitelio Corneal/citología , Femenino , Perfilación de la Expresión Génica , Homeostasis , Humanos , Leucocitos/inmunología , Leucocitos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Imagen Molecular , Oxígeno/metabolismo , Regeneración/efectos de los fármacos , Regeneración/genética , Cicatrización de Heridas/efectos de los fármacos
16.
Int J Mol Sci ; 22(20)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34681563

RESUMEN

Assessing dementia conversion in patients with mild cognitive impairment (MCI) remains challenging owing to pathological heterogeneity. While many MCI patients ultimately proceed to Alzheimer's disease (AD), a subset of patients remain stable for various times. Our aim was to characterize the plasma metabolites of nineteen MCI patients proceeding to AD (P-MCI) and twenty-nine stable MCI (S-MCI) patients by untargeted metabolomics profiling. Alterations in the plasma metabolites between the P-MCI and S-MCI groups, as well as between the P-MCI and AD groups, were compared over the observation period. With the help of machine learning-based stratification, a 20-metabolite signature panel was identified that was associated with the presence and progression of AD. Furthermore, when the metabolic signature panel was used for classification of the three patient groups, this gave an accuracy of 73.5% using the panel. Moreover, when specifically classifying the P-MCI and S-MCI subjects, a fivefold cross-validation accuracy of 80.3% was obtained using the random forest model. Importantly, indole-3-propionic acid, a bacteria-generated metabolite from tryptophan, was identified as a predictor of AD progression, suggesting a role for gut microbiota in AD pathophysiology. Our study establishes a metabolite panel to assist in the stratification of MCI patients and to predict conversion to AD.


Asunto(s)
Enfermedad de Alzheimer/sangre , Disfunción Cognitiva/complicaciones , Metabolómica/métodos , Propionatos/sangre , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/etiología , Biomarcadores/sangre , Disfunción Cognitiva/sangre , Progresión de la Enfermedad , Femenino , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad
17.
Cells ; 10(9)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34572079

RESUMEN

Heart failure (HF) is a global pandemic public health burden affecting one in five of the general population in their lifetime. For high-risk individuals, early detection and prediction of HF progression reduces hospitalizations, reduces mortality, improves the individual's quality of life, and reduces associated medical costs. In using an artificial intelligence (AI)-assisted genome-wide association study of a single nucleotide polymorphism (SNP) database from 117 asymptomatic high-risk individuals, we identified a SNP signature composed of 13 SNPs. These were annotated and mapped into six protein-coding genes (GAD2, APP, RASGEF1C, MACROD2, DMD, and DOCK1), a pseudogene (PGAM1P5), and various non-coding RNA genes (LINC01968, LINC00687, LOC105372209, LOC101928047, LOC105372208, and LOC105371356). The SNP signature was found to have a good performance when predicting HF progression, namely with an accuracy rate of 0.857 and an area under the curve of 0.912. Intriguingly, analysis of the protein connectivity map revealed that DMD, RASGEF1C, MACROD2, DOCK1, and PGAM1P5 appear to form a protein interaction network in the heart. This suggests that, together, they may contribute to the pathogenesis of HF. Our findings demonstrate that a combination of AI-assisted identifications of SNP signatures and clinical parameters are able to effectively identify asymptomatic high-risk subjects that are predisposed to HF.


Asunto(s)
Predisposición Genética a la Enfermedad , Insuficiencia Cardíaca/genética , Polimorfismo de Nucleótido Simple , Anciano , Inteligencia Artificial , Femenino , Estudio de Asociación del Genoma Completo , Factores de Riesgo de Enfermedad Cardiaca , Insuficiencia Cardíaca/diagnóstico , Humanos , Masculino , Persona de Mediana Edad
18.
Biomedicines ; 9(9)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34572415

RESUMEN

Cisd2 (CDGSH iron sulfur domain 2) is a pro-longevity gene that extends the lifespan and health span of mice, ameliorates age-associated structural damage and limits functional decline in multiple tissues. Non-alcoholic fatty liver disease (NAFLD), which plays an important role in age-related liver disorders, is the most common liver disease worldwide. However, no medicines that can be used to specifically and effectively treat NAFLD are currently approved for this disease. Our aim was to provide pathological and molecular evidence to show that Cisd2 protects the liver from age-related dysregulation of lipid metabolism and protein homeostasis. This study makes four major discoveries. Firstly, a persistently high level of Cisd2 protects the liver from age-related fat accumulation. Secondly, proteomics analysis revealed that Cisd2 ameliorates age-related dysregulation of lipid metabolism, including lipid biosynthesis and ß-oxidation, in mitochondria and peroxisomes. Thirdly, Cisd2 attenuates aging-associated oxidative modifications of proteins. Finally, Cisd2 regulates intracellular protein homeostasis by maintaining the functionality of molecular chaperones and protein synthesis machinery. Our proteomics findings highlight Cisd2 as a novel molecular target for the development of therapies targeting fatty liver diseases, and these new therapies are likely to help prevent subsequent malignant progression to cirrhosis and hepatocellular carcinoma.

19.
Antioxidants (Basel) ; 10(4)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916843

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) and its more severe form, nonalcoholic steatohepatitis (NASH), are the most common chronic liver diseases worldwide. However, drugs to treat NAFLD and NASH are an unmet clinical need. This study sought to provide evidence that Cisd2 is a molecular target for the development of treatments targeting NAFLD and NASH. Several discoveries are pinpointed. The first is that Cisd2 dosage modulates the severity of Western diet-induced (WD-induced) NAFLD. Specifically, Cisd2 haploinsufficiency accelerates NAFLD development and exacerbates progression toward NASH. Conversely, an enhanced Cisd2 copy number attenuates liver pathogenesis. Secondly, when a WD is fed to mice, transcriptomic analysis reveals that the major alterations affecting biological processes are related to inflammation, lipid metabolism, and DNA replication/repair. Thirdly, among these differentially expressed genes, the most significant changes involve Nrf2-mediated oxidative stress, cholesterol biosynthesis, and fatty acid metabolism. Finally, increased Cisd2 expression protects the liver from oxidative stress and reduces the occurrence of mitochondrial DNA deletions. Taken together, our mouse model reveals that Cisd2 plays a crucial role in protecting the liver from WD-induced damages. The development of therapeutic agents that effectively enhance Cisd2 expression is one potential approach to the treatment of WD-induced fatty liver diseases.

20.
Nat Commun ; 12(1): 1322, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637724

RESUMEN

The ubiquitin-proteasome system (UPS) and autophagy are two major quality control processes whose impairment is linked to a wide variety of diseases. The coordination between UPS and autophagy remains incompletely understood. Here, we show that ubiquitin ligase UBE3C and deubiquitinating enzyme TRABID reciprocally regulate K29/K48-branched ubiquitination of VPS34. We find that this ubiquitination enhances the binding of VPS34 to proteasomes for degradation, thereby suppressing autophagosome formation and maturation. Under ER and proteotoxic stresses, UBE3C recruitment to phagophores is compromised with a concomitant increase of its association with proteasomes. This switch attenuates the action of UBE3C on VPS34, thereby elevating autophagy activity to facilitate proteostasis, ER quality control and cell survival. Specifically in the liver, we show that TRABID-mediated VPS34 stabilization is critical for lipid metabolism and is downregulated during the pathogenesis of steatosis. This study identifies a ubiquitination type on VPS34 and elucidates its cellular fate and physiological functions in proteostasis and liver metabolism.


Asunto(s)
Autofagia/fisiología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Hígado/metabolismo , Proteostasis/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología , Animales , Autofagosomas/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/genética , Dieta Alta en Grasa/efectos adversos , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones Endogámicos C57BL , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...